النتائج (
العربية) 1:
[نسخ]نسخ!
BAT Mass/Activity Can be Enhanced with Drugs, Inducing Long-Term Body Weight Loss and Improvement of Diabetes in AnimalsThe efficacy of increasing brown adipose tissue (BAT) recruitment (BAT mass and expression of UCP1) as a therapeutic approach for obesity and type 2 diabetes has been demonstrated by many groups (Holloway et al., 1992; Himms-Hagen et al., 1994; Kopecky et al., 1995, 1996a; Nagase et al., 1996; Collins et al., 1997; Ghorbani and Himms-Hagen, 1997; Arch, 2002; Kim et al., 2006). Agents that increase BAT recruitment and UCP1 levels (for instance can effectively treat obesity and insulin resistance/diabetes in all rodent models of obesity (Arch, 2002). Interestingly, in lean animals (which have normal amounts of BAT), enhancement of BAT recruitment or activity (e.g., by drugs or cold exposure) does not affect body weight, and the induced increase in metabolic rate is compensated by an increase in food intake. However, in obese animals enhancement of energy expenditure by BAT recruitment seems to be the most effective (long-term) therapy for decreasing body weight and improving the metabolic status (as compared to treatment with diet drugs). Indeed, increasing or restoring normal levels of BAT mass/UCP1 levels in obese rodents prevents the adaptive drop in metabolic rate invariably observed upon weight loss due to a decrease in food intake (Dulloo and Girardier, 1990; Leibel et al., 1995; Crescenzo et al., 2003; Heilbronn and Ravussin, 2003; Dulloo, 2005, 2007; Major et al., 2007). It seems that increasing BAT mass/UCP1 levels resets the “adipostat” to a lower level (Cannon and Nedergaard, 2009). Weight/fat loss can be maintained long-term only if the adipostat is readjusted to a lower level. The mechanisms participating in this adipostat are not known in detail but BAT (increasing BAT recruitment/activity) seems to play an important role in this system (Cannon and Nedergaard, 2009). Gastric bypass (Roux-en-Y) surgery has been shown to have dramatic effects on body weight and blood glucose homeostasis/glucose metabolism. The molecular mechanisms responsible for this efficacy are not yet fully understood but recent data suggest that BAT recruitment plays a key role (Stylopoulos et al., 2009), again supporting an adipostat-lowering effect of BAT.
يجري ترجمتها، يرجى الانتظار ..
