Home | Purchase | Search
Algebra Standard for Grades 6–8
Expectations
Instructional programs from prekindergarten through grade 12 should enable all students to— In grades 6–8 all students should—
Understand patterns, relations, and functions • represent, analyze, and generalize a variety of patterns with tables, graphs, words, and, when possible, symbolic rules;
• relate and compare different forms of representation for a relationship;
• identify functions as linear or nonlinear and contrast their properties from tables, graphs, or equations.
Represent and analyze mathematical situations and structures using algebraic symbols • develop an initial conceptual understanding of different uses of variables;
• explore relationships between symbolic expressions and graphs of lines, paying particular attention to the meaning of intercept and slope;
• use symbolic algebra to represent situations and to solve problems, especially those that involve linear relationships;
• recognize and generate equivalent forms for simple algebraic expressions and solve linear equations
Use mathematical models to represent and understand quantitative relationships • model and solve contextualized problems using various representations, such as graphs, tables, and equations.
Analyze change in various contexts • use graphs to analyze the nature of changes in quantities in linear relationships.
Students in the middle grades should learn algebra both as a set of concepts and competencies tied to the representation of quantitative relationships and as a style of mathematical thinking for formalizing patterns, functions, and generalizations. In the middle grades, students should work more frequently with algebraic symbols than in lower grades. It is essential that they become comfortable in relating symbolic expressions containing variables to verbal, tabular, and graphical representations of numerical and quantitative relationships. Students should develop an initial understanding of several different meanings and uses of variables through representing quantities in a variety of problem situations. They should connect their experiences with linear functions to their developing understandings of proportionality, and they should learn to distinguish linear relationships from nonlinear ones. In the middle grades, students should also learn to recognize and generate equivalent expressions, solve linear equations, and use simple formulas. Whenever possible, the teaching and learning of algebra can and should be integrated with other topics in the curriculum.
Understand patterns, relations, and functions
The study of patterns and relationships in the middle grades should focus on patterns that relate to linear functions, which arise when there is a constant rate of change. Students should solve problems in which they use tables, graphs, words, and symbolic expressions to represent and examine functions and patterns of change. For example, consider the following problem:
Charles saw advertisements for two cellular telephone companies. Keep-in-Touch offers phone service for a basic fee of $20.00 a month plus $0.10 for each minute used. ChitChat has no monthly basic fee but charges $0.45 a minute. Both companies use technology that allows them to charge for the exact amount of time used; they do not "round up" the time to the nearest minute, as many of their competitors do. Compare these two companies' charges for the time used each month.
Students might begin by making a table, picking convenient numbers of minutes, and finding the corresponding costs for the two companies, as shown in figure 6.8a. Using a graphing calculator, students might then plot the points as ordered pairs (minutes, cost) on the coordinate plane, obtaining a graph for each of the two companies (see fig. 6.8b). Some students might describe the pattern in each graph verbally: "Keep-in-Touch costs $20.00 and then $0.10 more per minute." Others might write an equation to represent the cost (y) in dollars in terms of the number of minutes (x), such as y = 20.00 + 0.10x.
Fig. 6.8. Students can compare the charges for two telephone companies by making a table (a) and by representing the charges on a graphing calculator (b).
p. 223 Before the students solve the problem, a teacher might ask them to use their table and graph to focus on important basic issues regarding » the relationships they represent. By asking, "How much would each company charge for 25 minutes? For 100 minutes?" the teacher could find out if students can interpret and extend the patterns. Since the table identifies only a small number of distinct points, a teacher could ask why it is legitimate to connect the points on the graph to make a line. Students might also be asked why one graph (for ChitChat) includes the origin but the other (for Keep-in-Touch) does not (see fig. 6.8b). Most students will recognize that the ChitChat graph includes the origin because there is no charge if no calls are made but the Keep-in-Touch graph includes (0, 20) because the company charges $20.00 even if the telephone is not used.
Many students will naturally seek a formula to express these patterns, but questions such as the following would be a good catalyst for others: How can you find the cost for any number of minutes for the Keep-in-Touch plan? For the ChitChat plan? What aspects of the stated price schedule are indicated in the graph? How? Students are likely to observe the constant difference between both the successive entries in the table and the coordinates of the points for each company along a straight line. They may explain the pattern underlying the function by saying, "Whenever you talk for one more minute, you pay $0.10 more (or $0.45 more), so the points go up the same amount each time." Others might say that a straight line is reasonable because each company charges a constant amount for each minute. Teachers should encourage students to explain their observations in their own words. Their explanations will provide the teacher with important insights into the students' thinking, particularly how well they recognize and represent linear relationships.
A solution to the stated problem requires comparing data from the two companies. A teacher might want to ask additional questions about this comparison: Which company is cheaper if you use the telephone infrequently? If you use it frequently? If you cannot spend more than $50.00 in a month but you want to talk for as many minutes as possible, which company would be the better choice? Considering questions such as these can lay the groundwork for a pivotal question: Is there a number of minutes that costs the same for both companies? Such questions could give rise to many observations. For example, most students will notice in their table that something important happens between 50 and 60 minutes, namely, using ChitChat becomes more expensive than using Keep-in-Touch. From the graph, some students may observe that this shift occurs at about 57 minutes: Keep-in-Touch is the cheaper company when a customer uses more than 57 minutes in a month. Experiences such as this can lay a foundation for solving systems of simultaneous equations.
p. 224 The problem could also easily be extended or adapted in ways that would draw students' attention to important characteristics of the line graph for each company's charges. For example, to draw attention to the y-intercept, students could be asked to use a graphing calculator to examine how the graph would be affected if Keep-in-Touch increased or decreased its basic fee or if ChitChat decided to begin charging a basic fee. Students' attention could be drawn to the slope by asking them to consider the steepness of the lines using a question such as, What happens to the graph for Keep-in-Touch if the company increases its cost per minute from $0.10 to $0.15? Through experiences such as these, students should develop a general understanding of, and » facility with, slope and y-intercept and their manifestations in tables, graphs, and equations.
The problem could also easily be extended to nonlinear relationships if, for instance, the companies did not charge proportionally for portions of minutes used. If they rounded to the nearest minute, then the cost for each company would be graphed as a step function rather than a linear function. In another variation, a nonlinear pricing scheme for a third company could be introduced.
Another important topic for class discussion is comparing and contrasting the merits of graphical, tabular, and symbolic representations in this example. A teacher might ask, "Which helps us see better the point at which the two companies switch position and Keep-in-Touch becomes the more economical—a table or a graph?" "Is it easier to see the rate per minute from the graph or from the equation?" or "How can you determine the rate per minute from the table?" Through discussion, students can identify the strengths and the limitations of different forms of representation. Graphs give a picture of a relationship and allow the quick recognition of linearity when change is constant. Algebraic equations typically offer compact, easily interpreted descriptions of relationships between variables.
Represent and analyze mathematical situations and structures using algebraic symbols
Working with variables and equations is an important part of the middle-grades curriculum. Students' understanding of variable should go far beyond simply recognizing that letters can be used to stand for unknown numbers in equations (Schoenfeld and Arcavi 1988). The following equations illustrate several uses of variable encountered in the middle grades:
27 = 4x + 3
1 = t(1/t)
A = LW
y = 3x
The role of variable as "place holder" is illustrated in the first equation: x is simply taking the place of a specific number that ca