Copy-number polymorphism or variation
Genetic association studies generally evaluate SNPs, which are variations in single nucleotides at specific genomic locations between individuals of the same species. Recent results indicate that the human genome contains another frequent type of polymorphism, copy-number variations (CNVs; Conrad et al., 2010). A CNV is a variation in which a segment of DNA can be found in various copy numbers in the genomes of different individuals. CNVs range in size from a few hundred nucleotides to several megabases. Compared with SNPs, CNVs affect a more significant fraction of the genome and arise more frequently. Hence, CNVs significantly contribute to human evolution, genetic diversity, and an increasing number of phenotypic traits (Stankiewicz and Lupski, 2010).
CNVs of DNA sequences are abundant in natural populations and are functionally significant but still need to be fully ascertained. A CNV is generated by both recombination and replication mechanisms and a de-novo locus-specific mutation rate, which is higher than in that in SNP. CNVs can cause Mendelian, sporadic, or diseased effects and affect gene duplication, exon shuffling, and genome diversity and evolution (Zhang et al., 2009). Mechanisms of changes causing CNV evolution in humans, through deletions and duplications of chromosomal segments, were described by Hastings et al. (2009).
CNVs in humans were examined by SNP genotyping arrays and clone-based comparative genomic hybridization (Redon et al., 2006). Large (>100 kb) CNVs affect a much smaller portion of the genome than initially reported. Approximately 80% of observed copy-number differences between pairs of individuals were because of common copy-number polymorphisms with an allele frequency greater than 5%, and more than 99% were derived from inheritance rather than new mutations. Most common were the diallelic copy-number polymorphisms in strong linkage disequilibrium with SNPs, and most low-frequency CNVs segregated onto specific SNP haplotypes